@Boots in Action I think you are correct here. I was going from one of the video's a while back in this thread that showed the effect of shading a single cell in a panel that was connected in series vs the same scenario on a panel connected in series.Hi @mikerezny and @G Daddy , here is a scenario from one of your enthusiastic pupils. What do do think??
There are two panels rated at 150W (7.5A @ 20v) with NO BLOCKING diodes and only BYPASS diodes on each panel. A MPPT controller is in use. If these two panels are connected in SERIES and one is badly shaded, the panel in full sun continues to produce at full power and current from this panel is able to bypass the shaded panel without major losses.
However, although shaded , the other panel is NOT a resistance in the full sense of the word. If Irradiance on this panel is still close to 200W /M squared, (as per link para 7.3) it will still have VOLTAGE potential of nearly the same Vm as the panel in the full sun. Although current produced will be low, say 1A or less, that means that the total output of the string would be 7.5A plus 1A at the combined voltage of both panels , say 40V in theory. So the WATTAGE from the two panels is NOT halved just because one is shaded and the MPPT controller can make use of the still available higher voltage. If this is correct, then the panels would still be producing considerably more watts than if the shaded panel was just being bypassed. A very interested student is now asking the "teachers"!!
Unless each CELL has a bypass diode, then partial shading has a greater impact on panels in series than those in parallel.
Climbing up and pulling the factory fitted panels and wiring apart also gives me a headache just thinking about it.